Бесплатная консультация юриста:
8 (800) 500-27-29 (доб. 553)
СПб и Лен. область:Санкт-Петербург и область:
+7 (812) 426-14-07 (доб. 318)
Москва и МО:
+7 (499) 653-60-72 (доб. 296)
Получить консультацию

Сварочные аппараты принцип работы и устройство

Устройство сварочного трансформатора

Чтобы осуществлять плавление металла электрической дугой, необходимо изменить параметры тока, потребляемого от сети. В аппарате он модернизируется так, что напряжение понижается (V), а сила тока возрастает (А). Сварка металла этим оборудованием возможна благодаря несложным комплектующим, входящим в его конструкцию. Большинство моделей включают в себя:

  • магнитопровод;
  • стационарную первичную обмотку из изолированного провода;
  • движущуюся вторичную обмотку, часто без изоляции, для улучшения теплоотдачи;
  • вертикальный винт с лентовидной резьбой;
  • ходовую гайку винта и крепление к обмотке;
  • рукоятку для вращения винта;
  • зажимы для вывода и крепления проводов;
  • корпус с жалюзи для охлаждения.

Некоторые сварочные трансформаторы переменного тока содержат дополнительное оборудование, совершенствующее их работу, о котором будет описано ниже в разделе схем.

Устройство сварочного трансформатора предусматривает магнитопровод. Сердечник не влияет на силу тока, а лишь способствует образованию магнитного поля. Для этого используется пакет пластин из специальной стали. Их поверхность покрывается оксидной изоляцией. Некоторые модели лакируются. Если бы сердечник был из сплошного металла, то вихревые токи (токи Фуко), получаемые из-за действия магнитного потока, снижали бы индукцию поля. За счет наборных составляющих сердечник не образует сплошной проводник, что снижает влияние токов Фуко.

Для более тихой работы пластины сердечника важно стягивать потуже. Слабое соединение ведет к вибрации составляющих благодаря прохождению переменного тока с частотой 50 Гц. Но даже плотное стягивание не устраняет всего шума, поэтому любой расчет сварочного трансформатора подразумевает гул, что слышно на видео по его работе.

Что это такое, что представляет собой выпрямитель

Сварочные выпрямители — это устройства, которые служат для преобразования напряжения переменного тока в напряжение постоянного тока, энергия которого, в дальнейшем используется для получения сварочной дуги.

Достоинства и недостатки

Маломощные, но при этом  небольшие, мобильные устройства сегодня  заняли собственные ниши.

  1. В первую очередь это бытовая сфера. Аппарат берут на дачу, дальнюю поездку. Не займет он много места в городской квартире, гараже, любительской мастерской.
  2. Малые предприятия и частные предприниматели. Пригодится на предприятиях автосервиса. Как вспомогательный инструмент при проведении строительства и ремонтов.

Популярность подобным агрегатам добавляет ряд достоинств:

  • Низкий вес и небольшие габариты.
  • Простота использования. Освоить работу с прибором можно за два-три часа.
  • Набор дополнительных опций (предотвращение залипания электрода, быстрое и простое зажигание дуги и др.) сглаживает ошибки начинающих сварщиков.
  • Возможность подключать мини сварочный аппарат к бытовой сети.
  • Высокое КПД, снижающее энергопотребление на единицу мощности устройства.

Не лишены они и недостатков:

  • Небольшая мощность не позволяет сварку массивных изделий, длительную непрерывную работу.
  • Сложность порождает уязвимость. Устройства «не любят» работать при отрицательных температурах, в условиях влажности и запыленности.

Устройство сварочного аппарата инверторного типа. Часть 1. Силовой блок

Разбираться в устройстве сварочного инвертора желательно по схеме конкретного аппарата.

К сожалению, схемы на TELWIN Force 165 я не нашёл, поэтому нагло позаимствуем схему из руководства по ремонту другого аппарата – TELWIN Tecnica 144-164.

Внешний вид платы сварки TELWIN Force 165 с указанием расположения некоторых элементов схемы.

Принципиальная схема сварочного аппарата инверторного типа TELWIN Tecnica 144-164 состоит из двух основных частей: силовой и управляющей.

Сначала разберёмся в схемотехнике силовой части. Вот схема. Картинка кликабельна (нажмите для увеличения – откроется в новом окне).

Сетевой выпрямитель

Как уже говорилось, сначала переменный ток электросети 220V выпрямляется мощным диодным мостом и фильтруется электролитическими конденсаторами.

Это нужно для того, чтобы переменный ток электросети частотой 50 герц стал постоянным. Конденсаторы С21, С22 нужны для сглаживания пульсаций выпрямленного напряжения, которые всегда присутствуют после диодного выпрямителя.

Выпрямитель реализован по классической схеме диодный мост. Он выполнен на диодной сборке PD1.

Следует знать, что на конденсаторах фильтра напряжение будет больше в 1,41 раза, чем на выходе диодного моста.

Таким образом, если после диодного моста мы получим 220V пульсирующего напряжения, то на конденсаторах будет уже 310V постоянного напряжения (220V * 1,41 = 310,2V).

Обычно же рабочее напряжение ограничивается отметкой в 250V (напряжение в сети ведь может быть и завышенным). Тогда на выходе фильтра мы получим все 350V. Именно поэтому конденсаторы имеют рабочее напряжение 400V, с запасом.

А что в железе?

На печатной плате сварочного аппарата TELWIN Force 165 элементы сетевого выпрямителя занимают довольно большую площадь (см. фото выше). Выпрямительный диодный мост установлен на охлаждающий радиатор.

Это элемент защиты.

В выпрямителе применяются диодные сборки (диодный мост) типа GBPC3508 или аналогичный. Сборка GBPC3508 рассчитана на прямой ток (I0) — 35А, обратное напряжение (VR) — 800V.

После диодного моста установлены два электролитических конденсатора (здоровенькие бочонки) ёмкостью 680 микрофарад каждый и рабочим напряжением 400V. Ёмкость конденсаторов зависит от модели аппарата. В модели TELWIN Tecnica 144 – 470 мкф., а в TELWIN Tecnica 164 – 680 мкф. Постоянное напряжение с выпрямителя и фильтра подаётся на инвертор.

Помеховый фильтр

Для того чтобы высокочастотные помехи, которые возникают из-за работы мощного инвертора, не попадали в электросеть, перед выпрямителем устанавливается фильтр ЭМС – электромагнитной совместимости.

На английский манер аббревиатура ЭМС обозначается как EMC (ElectroMagnetic Compatibility).

Если взглянуть на схему, то фильтр EMC состоит из элементов С1, C8, C15 и дросселя на кольцевом магнитопроводе T4.

Инвертор

Схема инвертора собрана по схеме так называемого «косого моста». В нём используется два мощных ключевых транзистора. В сварочном инверторе ключевыми транзисторами могут быть как IGBT-транзисторы, так и MOSFET.

Например, в моделях Telwin Tecnica 141-161 и 144-164 используются IGBT-транзисторы (HGTG20N60A4, HGTG30N60A4), а в модели Telwin Force 165 применены высоковольтные MOSFET-транзисторы (FCA47N60F). Оба ключевых транзистора устанавливаются на радиатор для отвода тепла.

Фото одного из двух транзисторов MOSFET типа FCA47N60F на плате TELWIN Force 165.

Снова взглянем на принципиальную схему и найдём на ней элементы инвертора.

Постоянное напряжение коммутируется транзисторами Q5 и Q8 через обмотку импульсного трансформатора T3 с частотой гораздо большей, чем частота электросети. Частота переключений может составлять несколько десятков килогерц! По сути, создаётся переменный ток, как и в электросети, но только он имеет частоту в несколько десятков килогерц и прямоугольную форму.

Для защиты транзисторов от опасных выбросов напряжения используются демпфирующие RC-цепи R46C25, R63C30.

Для понижения напряжения используется высокочастотный трансформатор T3. С помощью транзисторов Q5, Q8 через первичную обмотку трансформатора T3 (обмотка 1-2) коммутируется напряжение, которое поступает от сетевого выпрямителя (DC+, DC-). Это то самое постоянное напряжение в 310 – 350V, которое было получено на первом этапе преобразования.

За счёт коммутирующих транзисторов постоянное напряжение преобразуется в переменное. Как известно, трансформаторы постоянный ток не преобразуют.

Со вторичной обмотки трансформатора T3 (обмотка 5-6) снимается уже намного меньшее напряжение (около 60-70 вольт), но максимальный ток может достигать 120 – 130 ампер! В этом и заключается основная роль трансформатора T3.

Через первичную обмотку течёт небольшой ток, но большого напряжения. Со вторичной обмотки уже снимается малое напряжение, но большой ток.

Размеры этого самого трансформатора невелики.

Его вторичная обмотка выполнена несколькими витками ленточного медного провода в изоляции. Сечение провода внушительное, да и не мудрено, ток в обмотке может достигать 130 ампер! 

Далее со вторичной обмотки импульсного трансформатора переменный ток высокой частоты выпрямляется мощными диодными выпрямителями. С выхода выпрямителя (OUT+, OUT-) снимается электрический ток с нужными параметрами. Это и необходимо для проведения сварочных работ.

Выходной выпрямитель

Выходной выпрямитель собран на базе мощных сдвоенных диодов с общим катодом (D32, D33, D34). Эти диоды обладают высоким быстродействием, т. е. они могут быстро открываться и также быстро закрываться. Время восстановления trr < 50 ns (50 наносекунд).

Это свойство очень важно, поскольку они выпрямляют переменный ток высокой частоты (десятки килогерц). Обычные выпрямительные диоды с такой задачей бы не справились – они бы просто не успевали открываться и закрываться, нагревались и выходили бы из строя. Поэтому в случае ремонта заменять диоды в выходном выпрямителе следует именно быстродействующими.

В выпрямителе используются сдвоенные диоды марок STTH6003CW, FFH30US30DN, VS-60CPH03 (с ними мы ещё встретимся ). Все эти диоды являются аналогами, рассчитаны на прямой ток 30 ампер на один диод (60 ампер на оба) и обратное напряжение 300 вольт. Устанавливаются на радиатор.

Для защиты диодов выпрямителя используется демпфирующая RC-цепочка R60C32 (см. схему силовой части).

Схема запуска и реализация «мягкого пуска»

Для питания микросхем и элементов, которые расположены на плате управления, используется интегральный стабилизатор на 15 вольт – LM7815A. Он установлен на радиатор.

Напряжение питания на стабилизатор поступает с основного выпрямителя PD1 через два последовательно включенных резистора R18, R35 (6,8 кОм 5W).

Эти резисторы понижают напряжение и участвуют при запуске схемы.

Напряжение +15 со стабилизатора U3 (LM7815A) поступает на управляющую схему. Далее, когда схема управления и драйвер «раскачали» мощную схему инвертора, то на дополнительной вторичной обмотке трансформатора T3 (обмотка 3-4) появляется напряжение, которое выпрямляется диодом D11.

Через диод D9 напряжение питания поступает на интегральный стабилизатор LM7815A и теперь схема «запитывает» как бы сама себя. Вот такой вот хитрый «приём».

Выпрямленное напряжение после диода D11 также служит для питания реле RL1, охлаждающего вентилятора V1 и индикаторного светодиода D10 (Verde – «Зелёный»). Резисторы R40, R41, R65, R37 гасят излишки напряжения. Для стабилизации напряжения питания вентилятора V1 (12V) применяется 5-ти ваттный стабилитрон D36 на 12V.

Реле RL1 обеспечивает плавный запуск инвертора («мягкий пуск»). Разберёмся с этим подробнее.

В момент включения сварочного аппарата начинается заряд электролитических конденсаторов. В самом начале зарядный ток очень велик и может вызвать перегрев и выход из строя диодов выпрямителя. Чтобы уберечь диодную сборку от повреждения зарядным током применяется схема ограничения заряда (или «мягкого пуска»). Взглянем на схему.

Основным элементом схемы «мягкого пуска» служит резистор R4, мощность которого 8W (8 ватт). Сопротивление резистора – 47 ом. Именно на него возложена роль ограничения зарядного тока в первые моменты после включения.

После того, как заряд конденсаторов закончился, а инвертор начал работу в штатном режиме, электромагнитного реле RL1 замыкает контакты. Контакты реле шунтируют резистор R4, и в дальнейшем он не участвует в работе схемы, так как весь ток проходит через контакты реле. Таким образом реализован плавный запуск.

На плате инвертора TELWIN Force 165 также можно найти элементы схемы «мягкого пуска». В качестве реле RL1 выступает электромагнитное реле модели Finder на рабочее напряжение 24V (параметры контактов реле – 16A 250V~).

Итак, мы узнали о том, что сварочный инвертор состоит из сетевого выпрямителя 220V, мощного инвертора на транзисторах, понижающего трансформатора и выходного выпрямителя. Это силовые части схемы. Через них протекают огромные токи. Но где же «мозги» этого устройства? Кто управляет работой инвертора?

Об этом мы узнаем из следующей части нашего повествования. Читать далее.

Главная » Мастерская » Текущая страница

Также Вам будет интересно узнать:

Источник: https://go-radio.ru/ustroystvo-svarochnogo-invertora.html

Устройство и принцип работы

Трансформаторный сварочный аппарат является самым распространенным среди оборудования, предназначенного для сварки. Устройство достаточно простое, следовательно, ремонт не займет много времени. Электрическая энергия, поступающая в устройство, преобразуется только в одном узле — непосредственно трансформаторе. Бытовая частота тока составляет не более 50 Герц. Количественное поступление тока настраивают при помощи специальной ручки. Механизм изменяет магнитный поток в магнитопроводе и приводит к необходимому для функционирования сварочной дуги размеру.

Принцип переработки энергии довольно прост.

Электрический ток поступает в первичную обмотку и отдает ей энергию. Та в свою очередь намагничивает сердечник, который передает энергию во вторичную обмотку. В это время во второй образуется переменный ток с напряжением до 70 Вольт и силой тока в 200 Ампер. Дуга, которая состоит из электронов, появляется в результате намагничивания вторичной обмотки. Сварочная дуга трансформатора применяется для сварки деталей и механизмов.

Каждый сварочный аппарат имеет различные показатели напряжения и силы тока.

Технические характеристики зависят от того, сколько находится витков на вторичной обмотке. Если мало, то напряжение будет минимальным, зато сила тока большой. И наоборот, если много, то сила тока уменьшится, а напряжение в свою очередь увеличится.

Устройство сварочного трансформатора переменного тока

Чтобы проще понять устройство данного изделия, можно рассмотреть все на примере такого изделия как сварочный трансформатор ТДМ.

  1. Первичная обмотка, которая выполняется и изолированного провода. Именно на нее поступает первичный ток, который идет из сети.
  2. Вторичная обмотка, как правило, на ней отсутствует изоляция. На ней созданы воздушные каналы, которые помогают лучшему процессу охлаждения данного элемента;
  3. Подвижная составляющая замкнутого магнитопровода (он же сердечник трансформатора);
  4. Система подвеса устройства, которая находится внутри корпуса и защищена тем самым от повреждения;
  5. Система управления, которая отвечает за расстояния между обмотками трансформатора и увеличением, или уменьшение данного воздушного зазора;
  6. Движущийся винт управления воздушным зазором между обмотками;
  7. Рукоять винта управления.

Но это не единственный вариант исполнения. Устройство сварочного трансформатора с подвижными обмотками является одним из самых популярных. Несмотря на похожесть, в конструкциях могут быть даже относительно небольшие отличия, которые могут повлиять на принцип действия сварочного трансформатора. Стандартной для многих предприятий, а также учебных заведений, где такая конструкция является основной учебной, может считаться сварочный трансформатор ТД-500, который имеет следующую конструкцию:

  1. Корпус трансформатора, который защищает от повреждений и внешнего воздействия все внутренние детали устройства;
  2. Магнитопровод;
  3. Рукоять управления ходовым винтом;
  4. Ходовой винт, который меняет положение обмоток, в результате чего изменяется расстояние между ними и создается различная величина воздушного зазора;
  5. Ходовая гайка, расположенная внутри корпуса;
  6. Вторичная обмотка, которая является подвижной и на нее поступает вторичное напряжение преобразованной величины;
  7. Первичная обмотка, которая располагается неподвижно и первичное напряжение, соответствующее тому, которое поступает из сети, приходит через нее.